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ABSTRACT

Fluid-phase velocity fluctuations in fixed beds and freely evolving suspensions are quanti-

fied using particle-resolved direct numerical simulation (PR-DNS). The flow regime corresponds

to homogeneous gas-solid systems typically encountered in fluidized beds, with high solid to

fluid density ratios and particle diameters being greater than dissipative length scales. The

contribution of turbulent and pseudo-turbulent fluctuations to the level of fluid-phase velocity

fluctuations is quantified in flow past fixed particle assemblies. The simulations are then ex-

tended to freely evolving suspensions with elastic and inelastic collisions. For the parameter

ranges considered here (volume fraction 0.1 and 0.2, particle to fluid density ratio 100 and

1000, coefficient of restitution in the range 0.7–1.0), the level of gas-phase velocity fluctuations

in freely evolving suspensions differs by only 10% from the value for a fixed bed at the same

solid volume fraction φ and mean slip Reynolds number Rem. Quantification of the Reynolds

stress indicates that the second moments of the gas-phase velocity fluctuations are anisotropic,

corresponding to unidirectional axisymmetric velocity fluctuations. The anisotropy increases

with Rem to a maximum in the range 10 ≤ Rem ≤ 40, and then decreases. In addition, the

anisotropy decreases with increasing solid volume fraction for all cases considered in this study.

The Reynolds stress is decomposed into isotropic and deviatoric parts, and their dependence

on φ and Rem is quantified and explained.
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CHAPTER 1. INTRODUCTION

1.1 Background

Multiphase flow is a system in which several phases such as solid, liquid and gas coexist and

interact with each other. Multiphase flows are very common in nature. Motion of raindrops

and snowflakes in air, sand storms, volcanic eruptions, and the sedimentation process in rivers

are examples of natural occurrences of multiphase flows. These flows are also very common

in industrial applications. For instance, in an internal combustion engine, fuel is injected

into the combustion chamber and the quality of fuel–air mixture determines the efficiency

of the combustion process. In fluidized bed combustors, solid fuel particles are suspended

by upward blowing jets of air during the combustion process, providing an effective chemical

reaction. In fluid catalytic cracking process, a fluidized powdered catalyst converts the high-

molecular weight hydrocarbons of crude oil into gasoline, olefin, and other products (Speight,

2006). A better understanding of the physical phenomena in multiphase flows will help current

applications become more efficient. The scope of this study is limited to two-phase flows

consisting of solid particles interacting with a gas phase.

In industrial applications of gas-solid flows, particle to fluid density ratio ρ(f)/ρ(f) is of the

order of 1000 and particle diameter dp ranges from 50 to 500µm. In these flows, the particles are

usually larger than the dissipative length scale η. The interaction of large particles with carrier

flow generates pseudo-turbulent gas-phase velocity fluctuations due to the mean slip velocity

(Tenneti et al., 2012). The mean slip velocity is an important parameter because it strongly

influences both the asymmetric pressure distribution around particles and the formation of

boundary layers on particle surfaces. The asymmetry of pressure is a key mechanism in the

formation of wake structures behind the spheres, which are then convected along the mean
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slip velocity and contribute to gas-phase velocity fluctuations. The mean slip velocity also

generates large velocity gradients in the gap between particles. These velocity gradients modify

the dissipation of gas-phase velocity fluctuations, which are no longer characterized by the

Kolmogorov scales, unlike the case of single-phase turbulence. These mechanisms determine

the level of gas-phase velocity fluctuations in particle-laden flows.

There are several studies in which particles are smaller than the dissipative length scale

(Squires and Eaton, 1990; Elghobashi and Truesdell, 1993; Boivin et al., 1998; Sundaram and

Collins, 1999). The influence of these small particles, called point–particles, on the gas phase

depends on the mass loading α. Mass loading is defined as ratio of the total mass of the solid

phase to the total mass of the gas phase. In systems with low mass loading (α� 1), particles

do not influence the carrier flow structures; they follow the gas-phase motions. Therefore, a

one-way coupling is valid, and the hydrodynamic forces on a particle are usually modeled as

a function of the particle Reynolds number. In systems with high mass loading (α > 1), the

interphase momentum transfer term is significant, and the influence of particles on the gas-

phase cannot be ignored. Thus, a two-way coupling is valid, and the interphase momentum

transfer term is modeled as a function of flow parameters. Although turbulence modulation has

been addressed for point–particles, it has not been comprehensively studied for large particles

that modify the flow motions through the formation of boundary layer at particle surface, as

well as the wake structures behind particles. The level of gas-phase velocity fluctuations k(f)

consists of both carrier flow turbulence, and pseudo-turbulent gas-phase velocity fluctuations

resulting from the presence of particles. From a modeling viewpoint, it is essential to distinguish

the level of these gas-phase velocity fluctuations and their contributions to k(f).

Experimental investigations of gas-solid flows provide solid information about characteristics

of gas-solid flows. Moran and Glicksman (2003) observed that the presence of particles results

in substantial enhancement of upstream turbulence intensity as it flows through a fluidized

bed compared to gas-phase velocity fluctuations in the absence of particles. The hot wire

anemometer technique used by Moran and Glicksman (2003) cannot distinguish the directional

components of the velocity fluctuations. Furthermore, it is an intrusive measurement technique,

as is the specially designed pitot probe used by Doig and Roper (1967). On the other hand,
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non-intrusive methods of laser Doppler anemometry (LDA) (Lee and Durst, 1982; Rogers and

Eaton, 1991; Sato et al., 1996), and particle image velocimetry (PIV) (Oakley et al., 1997; Kiger

and Pan, 2000) are limited to very dilute systems due to the difficulties with optical access in

denser gas-solid systems.

An alternative approach to investigate gas-phase velocity fluctuations in gas-solid flows is

to use particle-resolved direct numerical simulation (PR-DNS) that provides detailed spatial

and temporal information of the flow field. For gas-solid flows with particle diameters greater

than the dissipative length scale, PR-DNS is necessary to resolve all the scales of the carrier

flow turbulence and the flow scales introduced by the presence of particles. PR-DNS has been

used to study the interaction of decaying isotropic turbulence with a single particle (Bagchi and

Balachandar, 2004; Burton and Eaton, 2005) or a collection of particles (Zhang and Prosperetti,

2005), particle-laden turbulent channel flow (Uhlmann, 2008), gas-solid flows with upstream

turbulence (Xu and Subramaniam, 2010), and statistically homogeneous pseudo-turbulent gas-

solid flows with a mean slip velocity (Tenneti et al., 2012).

Although PR-DNS is an appropriate tool to study gas-solid flows of large particles, it is

prohibitively expensive for device-scale calculations. Computational fluid dynamics (CFD)

is however the most appropriate tool for device-scale calculations of gas-solid flows that solve

averaged conservation equations of mass, momentum and energy for each phase. The averaging

process leads to the appearance of unclosed terms such as interphase momentum transfer and

correlations of sub-grid velocity fluctuations. The applicability of CFD strongly depends on the

accuracy of models for unclosed terms in predicting all the mechanical interactions associated

with these terms. These interactions are outlined by Sinclair and Jackson (1989) as:

1. The interaction between the mean velocity of gas phase and the mean velocity of solid

phase

2. The interaction between the mean and fluctuating velocities of the gas phase

3. The interaction between the mean and fluctuating velocities of the solid phase

4. The interaction between particles and turbulent motions of the gas phase
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There have been several studies focusing on how to incorporate these interactions into hydro-

dynamics models. In early attempts, gas-phase velocity fluctuations were usually neglected

and the main focus was on the first and third interactions (Sinclair and Jackson, 1989; Ding

and Gidaspow, 1990; Pita and Sundaresan, 1993) that contribute to the granular temperature.

The neglect of gas-phase velocity fluctuations resulted in the uncertainty in the predictive ca-

pability and limited ability of early models. These shortcomings, and experimental evidence

supporting the importance of fluid-phase velocity fluctuations resulted in the emergence of a

new class of models in which the effects of fluid-phase velocity fluctuations were also consid-

ered. Louge et al. (1991) and Bolio et al. (1995) were the first to include the effect of gas-phase

velocity fluctuations in modeling by means of one-equation and two-equation models for dilute

systems of large particles. Subsequently, more sophisticated models such as the four-equation

k-ε model of Simonin (1996) were proposed, and valid for a wide range of volume fractions

and Reynolds numbers. These models are primarily based on the eddy viscosity hypothesis re-

quiring transport equations for k(f) and dissipation rate of gas-phase velocity fluctuations ε(f).

Thus, single-phase k-ε turbulence models were modified for gas-solid flow applications. How-

ever, their validity for dense suspensions with large particles has not been tested. Nevertheless,

PR-DNS of gas-solid flows play a key role in understanding the physics governing particulate

flows. These findings can be used to propose accurate models capturing the characteristics

of gas-solid suspensions. Accordingly, Tenneti et al. (2012) proposed a model for the level of

velocity fluctuations in gas-solid flows from PR-DNS over a wide range of Reynolds numbers

and solid volume fractions, as well as an eddy viscosity model.

Recent PR-DNS of Xu and Subramaniam (2010), Uhlmann (2008), and Tenneti et al. (2012)

indicate that the gas-phase Reynolds stress is strongly anisotropic, playing an important role

in anisotropic heat and mass transfer, even in statistically homogeneous suspensions. Level

of k(f) as a scalar quantity cannot represent the distribution of fluctuating energy among the

Reynolds stresses. Thus, the importance of anisotropy motivates us to quantify the anisotropy

in gas-solid flows from our PR-DNS data. This information in conjugation with the proposed

model for k(f) can be used to develop a model for gas-phase Reynolds stress.
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1.2 Research objectives and approaches

This study addresses the following questions:

1. What are the contributions of turbulent and pseudo-turbulent gas-phase velocity fluctu-

ations to the steady value of k(f) in fluidized beds?

2. How are gas-phase velocity fluctuations affected in freely evolving suspensions of heavy

particles?

3. How does the anisotropy of gas-phase Reynolds stress depend on flow parameters?

To answer these questions, we perform PR-DNS of homogeneous gas-solid systems with a

finite mean slip velocity in fixed particle assemblies and freely evolving suspensions. The fixed

particle assembly simulations are used to determine the relative contribution of turbulent and

pseudo-turbulent gas-phase velocity fluctuations to the steady level of k(f). In these simulations

the particles are held stationary and a steady flow is established by imposing a mean pressure

gradient that corresponds to the desired flow rate. Use of the fixed bed simulation methodology

for freely evolving gas-solid flows is justified if the configuration of the particles changes very

slowly compared to the time it takes to attain mean momentum balance (Xu and Subramaniam,

2010; Tenneti et al., 2012). However, a direct comparison between fixed and freely evolving

suspensions at the same solid volume fraction and Reynolds number has apparently not been

reported.

In real particle-laden flows, particles move and collide freely. Numerical simulations of

freely evolving suspensions have been performed elsewhere (Yin and Koch, 2007) to study the

sedimentation of particles under gravity in the presence of fluid. In these studies the steady

mean flow Reynolds number attains a unique value that depends on problem parameters (gas

and particle densities, solid volume fraction, gravitational acceleration, etc.). Therefore, in

sedimenting suspensions it is not possible to simulate arbitrary Reynolds numbers. However,

simulation of freely evolving suspensions in an accelerating frame of reference (Tenneti et al.,

2010) enables us to simulate suspensions at arbitrary Reynolds numbers while maintaining

other parameters at fixed values. The results are then compared over a wide range of problem
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parameters with data from fixed particle assemblies to gain insight into the effect of freely

moving particles on gas-phase velocity fluctuations. In addition, we verify the validity of the

fixed bed approximation to freely evolving suspensions of high Stokes number particles.

1.3 Report outline

Chapter 2 provides background information about governing equations and the numerical

approach. Chapter 3 addresses the research objectives and results, followed by chapter 4 where

the main findings are summarized and possible extensions are discussed.



www.manaraa.com

7

CHAPTER 2. DIRECT NUMERICAL SIMULATION OF GAS–SOLID

FLOWS WITH PUReIBM

In this chapter, the formulation of Particle-Resolved Uncontaminated-fluid Reconcilable

Immersed Boundary Method (PUReIBM) is introduced. The method is a legacy of Yusof

(1996) which was used to simulate the interaction of a single particle with a turbulent flow.

It was then developed by Tenneti et al. (2010) to simulate homogeneous gas-solid suspensions

with random distribution of particles for both fixed beds and freely evolving suspensions.

2.1 Introduction

Although gas-slid flows have been studied for several decades, design of devices utilizing

gas-solid suspensions, such as circulating fluidized beds and coal gasifiers, is still a challenge

in industrial applications. Recently, computational fluid dynamics (CFD) has played a key

role in such device-scale designs due to the increasing power of computational resources. CFD

involves solving averaged conservation equations of mass, momentum and energy for both

carrier and dispersed phases. These equations include unclosed interphase transfer terms and

sub-grid velocity fluctuation correlations. In modeling, the focus is to relate the unclosed terms

to averaged flow quantities. PR-DNS of gas-solid suspensions in canonical flows is the best

approach to developing accurate models for unclosed terms (Balachandar and Eaton, 2010)

in two-fluid theory. Accordingly, several PR-DNS methods have been developed by various

research groups. In the current study, we use PUReIBM based on the immersed boundary

method.
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2.2 Numerical method

PUReIBM is a robust and highly accurate method for PR-DNS of gas-solid flows. The

method is clearly described elsewhere (Garg, 2009; Tenneti et al., 2010). However, for the sake

of completeness the method is summarized here.

One of the advantages of PUReIBM over other PR-DNS methods is its flexibility in simulat-

ing freely evolving suspensions with arbitrary physical parameters. In numerical investigations

of freely evolving suspensions, the sedimentation of particles have usually been studied under

the influence of gravity, which leads to a balance between the drag force and the weight of

particles (Yin and Koch, 2007). In these simulations, the Reynolds number reaches a unique

value dependant upon physical parameters such as fluid and particle densities, and gravita-

tional acceleration. The formulation of PUReIBM in an accelerating frame of reference enables

us to simulate arbitrary mean slip Reynolds numbers, while keeping other parameters constant.

This feature lets us study the effect of each parameter on a freely evolving gas-solid suspension.

In PUReIBM a mean pressure gradient is established along the flow direction to balance the

drag force exerted on particles, and also supply the required body force to maintain desired

mean slip velocity. Since hydrodynamic forces from the fluid phase cause particles to experience

a mean acceleration, the mean pressure gradient should subsequently increase to maintain a

constant mean slip velocity between the two phases. Therefore, a steady state solution in the

laboratory frame is non-existent. The continuous growth of characteristic velocities in the lab-

oratory frame decreases the time stepping of the numerical method due to the Courant number

criterion. Thus, the simulation of freely evolving suspensions in the laboratory frame would be

prohibitively restricted to short periods of evolution time.

In PUReIBM, the velocity, pressure, and tensor fields are continuous. However, particle

presence is represented by implementing the no-slip and no-penetration boundary conditions

at the surface of particles. The strategy is similar to conventional CFD approaches where

the boundaries are satisfied by considering a ghost cell beyond the physical domain (Patankar

1980), and reversing the flow so the relative velocity between the two faces becomes zero at the

interface. In PUReIBM, the required immersed boundary forcing is only effective to the com-
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Figure 2.1 Schematic of the computational with multiple particles in PUReIBM. The volumes
of fluid and solid phases are denoted by V(f) and V(p), respectively. The boundary

surfaces of the fluid and solid phases are denoted by ∂V(f)
ext and ∂V(p)

ext, respectively.
The fluid and solid interface in computational domain is indicated by ∂Vint.

putational nodes inside the particles. Thus, the fluid-phase solution remains uncontaminated

compared to conventional immersed boundary methods (Peskin, 2002). This approach enables

us to directly compute the drag force by integrating the stress tensor over the particle surface.

In PUReIBM, an Eulerian description is used for the carrier phase and a Lagrangian de-

scription is used for the dispersed phase. Governing equations are solved over a Cartesian

grid, providing simplicity and generality of the numerical method, compared to body fitted

grid methods encompassing huge computational remeshing loads. The conservation equations

of mass and momentum in the laboratory and accelerating frames are related to each other. If

the laboratory frame and non-inertial frame are denoted by E and E respectively, the velocity,

position and time between these two frames are transformed as

u = u−Vf ,

x = x−
∫ t

0
Vf (t′)dt′,

t = t, (2.1)

where Vf is the accelerating frame velocity, x, t, and u are position, time and velocity in the

laboratory frame, and those with a bar corresponding to quantities in the accelerating frame.

The governing equations of the fluid phase are conservation equations of mass and momentum,

solved for both carrier and dispersed phases with periodic boundary conditions. Fig. 2.1 shows a

schematic periodic configuration of the simulation setup. Continuity and momentum equations
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in the accelerating frame E are given as (Pope, 2000)

∇ · u = 0, (2.2)

and

∂u

∂t
+ S = − 1

ρ(f)
g + ν(f)∇2u +

1

ρ(f)
f −Af , (2.3)

respectively, where u is the instantaneous velocity, S = ∇ · (uu) is the convective term in

conservative form, g is the pressure gradient, f is the immersed boundary forcing in response

to the presence of particles satisfying the boundary condition at the particle-fluid interface,

and Af is the frame acceleration.

The instantaneous quantities can be divided into into mean and fluctuating components.

Thus, for a given quantity Q(x, t), we have

Q(x, t) = 〈Q(t)〉V +Q′(x, t), (2.4)

with Q′ being the fluctuating component, and 〈.〉 denoting the ensemble average. In statistically

homogeneous fields, ensemble average is equivalent to the volumetric average, that is

〈Q(t)〉V =
1

V

∫
V
Q(x, t)dV. (2.5)

The mean conservation equations of mass and momentum can be obtained by using the above

averaging process in Eqs. 2.2 and 2.3, and integrating them over the computational volume.

The resulting equations are

∇ · 〈u〉V = 0, (2.6)

and

∂ 〈u〉V
∂t

= − 1

ρ(f)
〈g〉V +

1

ρ(f)

〈
f
〉
V −Af , (2.7)

for the mean conservation of mass and momentum, respectively. Subtracting the above equa-

tions from Eqs. 2.2 and 2.3 results in the fluctuating conservation equations of mass and mo-

mentum, given as

∇ · u′ = 0 (2.8)

and

∂u′

∂t
+ S = − 1

ρ(f)
g′ + ν(f)∇2u′ +

1

ρ(f)
f
′
, (2.9)
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respectively. As mentioned earlier, the system’s driving force is the mean pressure gradient

balancing the drag force exerted on particles, and maintaining a constant mean slip velocity

between the two phases. To obtain an expression for the evolution of mean pressure gradient,

the phasic mean momentum equation of the fluid phase is determined by integrating Eq. 2.3

over the fluid phase, providing

d

dt

〈
u(f)

〉
= − 1

ρ(f)
〈g〉V −

1

ρ(f)V (f)

∮
∂V(p)

(
−ψ′δ + µ(f)∇u

)
· n(p)dA−Af , (2.10)

where ψ′ is the fluctuating pressure, δ is the Kronecker delta, V (f) is the fluid volume, ∂V(p)

is the solid surface boundaries, and n(p) is the normal vector at the particle surface pointing

outward toward the fluid phase. Rearrangement of the above equation leads to an expression

for the mean pressure gradient as

− 1

ρ(f)
〈g〉V =

d

dt

〈
u(f)

〉
+

1

ρ(f)V (f)

∮
∂V(p)

(
−ψ′δ + µ(f)∇u

)
· n(p)dA+ Af . (2.11)

The mean pressure gradient cannot be determined since the frame acceleration is not spec-

ified. Thus, one would need to deduce the phasic mean momentum equation of the solid phase

to obtain an expression for this quantity. Accordingly, the governing equation of motion for

particles in the laboratory frame (with Lagrangian description) is

m
dV(m)

dt
=

∮
∂V(m)(t)

(−ψδ + µf∇u) · n(m)dA (2.12)

where m is the mass of each particle, ψ is the pressure, and the superscript (m) denotes the

mth sphere in the particle assembly. By transforming the velocity of the mth particle into the

accelerating frame by V
(m)

(t) = V(m)(t)−Vf (t), and using
〈
u(p)

〉
= (1/Np)

∑Np
m=1 V

(m)
as an

averaging operator, the phasic mean momentum equation of the solid phase is obtained as

d

dt

〈
u(p)

〉
= − 1

ρ(f)
〈g〉V −

1

ρ(p)V (p)

∮
∂V(p)

(
−ψ′δ + µ(f)∇u

)
· n(p)dA−Af , (2.13)

where ρ(p) is the particle density and V (p) is the solid-phase volume. Rearrangement of the

above equation leads to another mean pressure gradient expression as

− 1

ρ(p)
〈g〉V =

d

dt

〈
u(p)

〉
+

1

ρ(p)V (p)

∮
∂V(p)

(
−ψ′δ + µ(f)∇u

)
· n(p)dA+ Af . (2.14)
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In Eqs. 2.11 and 2.14, the integral term is the total drag force acting on particles (denoted as

FD from hereon) reconcilable to the average interphase momentum transfer
〈
τ ′jin

(f)
j δ

(
x− x(I)

)〉
in the two-fluid theory (Drew, 1983). Eliminating the frame acceleration between these two

equations gives a general closed expression for the mean pressure gradient(
1

ρ(f)
− 1

ρ(p)

)
〈g〉V =

d

dt

〈
u(p)

〉
− d

dt

〈
u(f)

〉
− FD

V

{
1

φρ(p)
+

1

(1− φ)ρ(f)

}
. (2.15)

Since the mean solid velocity is zero in the accelerating frame of reference, the solid-phase

unsteady term in this equation is zero. Additionally, the fluid-phase unsteady term at each

time step is estimated by a finite difference expression, enabling the mean fluid velocity to

attain a desired value
〈
u(f)

〉d
, determined by the Reynolds number. Hence, the unsteady term

in Eq. 2.15 is discretized as

d

dt

〈
u(f)

〉k+1
=

〈
u(f)

〉d − 〈u(f)
〉k

∆t
, (2.16)

where superscripts k and k + 1 denote the kth and k + 1th time steps, respectively. Therefore,

the mean pressure gradient is estimated as(
1

ρ(f)
− 1

ρ(p)

)
〈g〉k+1
V = −

〈
u(f)

〉d − 〈u(f)
〉k

∆t
− F

k
D

V

{
1

φρ(p)
+

1

(1− φ)ρ(f)

}
, (2.17)

Accordingly, by knowing the mean pressure gradient, the frame acceleration is determined from

Eq. 2.14, that is

Ak+1
f =

1

ρ(p)

(
−〈g〉k+1

V +
F
k
D,i

φV

)
. (2.18)

Although these formulations are derived for freely evolving suspensions, the fixed particle as-

sembly equations are recovered (Garg et al., 2011) in the limiting case of massive particles

(1/ρ(p) → 0).

In PUReIBM, due to the periodicity of the fluctuating fields, a pseudo-spectral method is

used with Crank-Nicolson scheme for the viscous terms and an Adams-Bashforth scheme for the

convective terms. A fractional time-stepping method based on Kim and Moin’s approach (Kim

and Moin, 1985) is used to advance the fluctuating velocities in time. Garg et al. (2011)

and Tenneti et al. (2011) have shown that PUReIBM is numerically convergent and accurate

in describing the drag force for DNS of gas-solid flows. The method is validated through
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a comprehensive set of tests: (i) flow past an isolated sphere (ii) Stokes flow past SC and

FCC arrangements (ranging from dilute to close-packed limit) compared with the boundary-

integral method of Zick and Homsy (1982), (iii) Stokes flow past random arrays of monodisperse

spheres compared with LBM simulations of van der Hoef et al. (2005), (iv) moderate to high

Reynolds numbers (Rem = 300) in SC and FCC arrangements compared with LBM simulations

of Hill et al. (2001), and (v) high Reynolds number flow past random arrays of monodisperse

spheres with ANSYS–FLUENT CFD package. It is also shown that PUReIBM is numerically

convergent for gas-phase velocity fluctuations (Tenneti et al., 2012), and the dissipation of

gas-phase fluctuating velocities (see Appendix B).
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CHAPTER 3. GAS–PHASE VELOCITY FLUCTUATIONS IN

STATISTICALLY HOMOGENEOUS FIXED PARTICLE BEDS AND

FREELY EVOLVING SUSPENSIONS USING PARTICLE–RESOLVED

DIRECT NUMERICAL SIMULATION

This chapter is a manuscript submitted to International Journal of Multiphase Flow, ti-

tled ”Gas-phase velocity fluctuations in statistically homogeneous fixed particle beds and freely

evolving suspensions using particle-resolved direct numerical simulation”, authored by Moham-

mad Mehrabadi, Sudheer Tenneti and Shankar Subramaniam.

Abstract

Gas-phase velocity fluctuations in fixed particle beds and freely evolving suspensions are

quantified using particle-resolved direct numerical simulation (PR-DNS). The flow regime cor-

responds to homogeneous gas-solid systems typically encountered in fluidized bed risers, with

high solid to gas density ratio and particle diameter being greater than the dissipative length

scales. The contribution of turbulent and pseudo-turbulent fluctuations to the level of gas-

phase velocity fluctuations is quantified in flow past fixed particle assemblies. The simulations

are then extended to freely evolving suspensions with elastic and inelastic collisions. It is found

that for the parameter values considered here (solid volume fraction 0.1 and 0.2, particle to

gas density ratio 100 and 1000, and coefficient of restitution in the range 0.7-1.0) the level

of gas-phase velocity fluctuations in freely evolving suspensions differs by only 10% from the

value for a fixed bed at the same solid volume fraction φ and mean slip Reynolds number Rem.

Quantification of the Reynolds stress indicates that the second moments of the gas-phase ve-

locity fluctuations are anisotropic, corresponding to unidirectional axisymmetric fluctuations.
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The anisotropy increases with Rem to a maximum that occurs in the range 10 ≤ Rem ≤ 40,

and then decreases. In addition, the anisotropy decreases with increasing solid volume fraction

for all cases considered in this study. The Reynolds stress is decomposed into isotropic and

deviatoric parts, and their dependence on φ and Rem is quantified and explained.

3.1 Introduction

Gas-solid flows are commonly found in industrial applications such as fluidized-bed combus-

tion, fluid catalytic cracking, coal gasification processes, and biomass energy generation (Fan

et al., 2004). The interaction of gas-phase velocity fluctuations with solid particles results in

flow structures, such as the core annular structure in circulating fluidized beds. In modeling of

dilute suspensions based on averaged equations, Louge et al. (1991) and Bolio et al. (1995) have

identified both gas-phase velocity fluctuations and particle-particle interaction as key mecha-

nisms that must be accurately modeled in order to capture this phenomenon. In addition,

gas-phase velocity fluctuations enhance the heat transfer and mixing of chemical species inside

the fluidized bed. This motivates the current study that is focused on understanding the origin

and mechanisms responsible for the generation of gas-phase velocity fluctuations in fluidized

beds is essential.

In industrial applications of particulate flows, particles are inertial (ρ(p)/ρ(f) ∼ 1000) with

diameter dp ranging from 50 to 500µm. In these flows, the particles are usually larger than

the length scale of dissipative flow motions η. The interaction of large particles with carrier

flow generates pseudo-turbulent gas-phase velocity fluctuations due to the mean slip velocity

(Tenneti et al., 2012). The mean slip velocity is an important parameter because it strongly

influences both the asymmetric pressure distribution around particles and the formation of

boundary layers on particle surfaces. The pressure asymmetry results in the formation of

wake structures behind the spheres, which are convected downstream by the carrier flow and

contribute to gas-phase velocity fluctuations. The mean slip velocity also generates large ve-

locity gradients in particle interstices. These local velocity gradients modify the dissipation of

gas-phase velocity fluctuations, which are no longer characterized by the Kolmogorov length

scale, unlike in the case of single-phase turbulence. These mechanisms determine the level
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of gas-phase velocity fluctuations k(f) in a particle-laden flow. While these phenomena have

been studied for the case of sub-Kolmogorov particles (dp < η) (see Balachandar and Eaton

(2010), and references therein), they have not been comprehensively studied for large particles

(dp > η). The level of k(f) consists of both pre-existing turbulent fluctuations in the carrier flow

and pseudo-turbulent gas-phase velocity fluctuations due to the presence of particles. Since the

mechanisms for the generation and dissipation of these fluctuations are different, it is useful

from a modeling viewpoint to distinguish the pseudo-turbulent from the pre-existing turbulent

velocity fluctuations in gas-solid suspensions.

Moran and Glicksman (2003) observed experimentally that the presence of particles in

circulating fluidized beds produces high levels of velocity fluctuations at dilute solid volume

fractions that is significant compared to gas-phase turbulent velocity fluctuations in the absence

of particles. The hot wire anemometer technique used by Moran and Glicksman (2003) cannot

distinguish the directional components of the velocity fluctuations. Furthermore, it is an intru-

sive measurement technique, as is the specially designed pitot probe used by Doig and Roper

(1967). On the other hand, non-intrusive methods of laser Doppler anemometry (LDA) (Lee

and Durst, 1982; Rogers and Eaton, 1991; Sato et al., 1996), and particle image velocimetry

(PIV) (Oakley et al., 1997; Kiger and Pan, 2000) are limited to very dilute systems due to the

difficulties with optical access in denser gas-solid systems.

An alternative approach to investigate gas-phase velocity fluctuations in gas-solid flows is

to use particle-resolved direct numerical simulation (PR-DNS) that provides detailed spatial

and temporal information of the flow field. For gas-solid flows with particle diameter greater

than the Kolmogorov length scale, PR-DNS is necessary to resolve all the scales of the carrier

flow turbulence and the flow scales introduced by the presence of particles. PR-DNS has been

used to study the interaction of decaying isotropic turbulence with a single particle (Bagchi and

Balachandar, 2004; Burton and Eaton, 2005) or a collection of particles (Zhang and Prosperetti,

2005), particle-laden turbulent channel flow (Uhlmann, 2008), gas-solid flows with upstream

turbulence (Xu and Subramaniam, 2010), as well as statistically homogeneous pseudo-turbulent

gas-solid flows with a mean slip velocity (Tenneti et al., 2012).

In the current study we perform PR-DNS of homogeneous gas-solid systems with a finite
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mean slip velocity in fixed particle assemblies and freely evolving suspensions. The fixed particle

assembly simulations are used to determine the relative contribution of turbulent and pseudo-

turbulent gas-phase velocity fluctuations to the steady level of k(f). In these simulations the

particles are held stationary and a steady flow is established by imposing a mean pressure gra-

dient that corresponds to the desired flow rate. Use of the fixed-bed simulation methodology for

gas-solid flows is justified if the configuration of the particles changes very slowly compared to

the time it takes to attain mean momentum balance. Xu and Subramaniam (2010) and Tenneti

et al. (2012) argued that the timescale over which the particle configuration changes depends

on ReT = dpT
1/2/ν(f), which is the Reynolds number based on the particle fluctuating velocity

characterized by the particle granular temperature T . Since both experiment (Cocco et al.,

2010) and PR-DNS (Tenneti et al., 2010) of gas-solid flows show that ReT is low for high

Stokes number suspensions, fixed-particle assemblies have been used as a good approximation

to freely evolving suspensions. However, a direct comparison between fixed and freely evolving

suspensions at the same solid volume fraction and Reynolds number has not been reported to

the best of our knowledge.

In real particle-laden flows, the particles move and collide freely. Numerical simulations of

freely evolving suspensions have been performed elsewhere (Yin and Koch, 2007) to study the

sedimentation of particles under gravity in the presence of fluid. In these studies the steady

mean flow Reynolds number attains a unique value that depends on problem parameters (gas

and particle densities, solid volume fraction, gravitational acceleration, etc.). Therefore, in

sedimenting suspensions it is not possible to simulate arbitrary Reynolds numbers. However,

the simulation of freely evolving suspensions in an accelerating frame of reference (Tenneti et al.,

2010) enables us to simulate suspensions at arbitrary Reynolds numbers while maintaining

other parameters at fixed values. The results are then compared over a wide range of problem

parameters with data from fixed particle assemblies to gain insight into the effect of freely

moving particles on gas-phase velocity fluctuations. In addition, we verify the validity of the

fixed bed approximation to freely evolving suspensions of high Stokes number particles.

Although PR-DNS is an appropriate tool to investigate particle-laden flows with dp > η,

they are prohibitively expensive for device-scale calculations. Device-scale calculations require
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CFD simulations of multiphase flows (Halvorsen et al., 2003; Sun et al., 2007) that solve aver-

aged equations for mass, momentum and energy with coupling terms corresponding to inter-

phase interactions. The closure of these equations requires modeling of interphase terms and

second moments of velocity fluctuations in both phases. In early modeling attempts (Sinclair

and Jackson, 1989; Ding and Gidaspow, 1990; Pita and Sundaresan, 1993) gas-phase velocity

fluctuations were usually neglected. The main focus was on the interaction of gas and solid

phases through their mean velocities, and the effect of fluctuating velocities in the solid phase

that contribute to the granular temperature. The neglect of gas-phase velocity fluctuations that

were not previously quantified led to considerable uncertainty in the predictive capabilities of

models. Experimental evidence of the importance of gas-phase velocity fluctuations resulted in

the emergence of a new class of models in which the effect of gas-phase velocity fluctuations was

also considered. Among the first to model the effect of gas-phase velocity fluctuations were the

one-equation model of Louge et al. (1991) and hte two-equation model of Bolio et al. (1995) for

dilute systems of large particles. Later on, more sophisticated models such as the four-equation

k-ε model of Simonin (1996) were proposed which are valid for a wide range of volume fraction

and Reynolds number. These models are basically extended versions of single-phase k-ε mod-

els modified to be used in gas-solid flow, and their validity in this regime of gas-solid flow has

not been tested. However, PR-DNS of canonical problems plays a key role in shedding light

on the physics governing gas-solid flows. The PR-DNS findings can then be used to propose

accurate models. In this regard, Tenneti et al. (2012) quantified the level of gas-phase velocity

fluctuations from PR-DNS over a wide range of φ and Rem and proposed an eddy viscosity

model.

Recent PR-DNS of gas-solid flows (Uhlmann, 2008; Xu and Subramaniam, 2010; Tenneti

et al., 2012) indicate that the gas-phase Reynolds stress is strongly anisotropic. In indus-

trial gas-solid flows, the anisotropy of the velocity fluctuations results in anisotropic heat and

scalar transport even in statistically homogeneous suspensions. Therefore, the importance of

anisotropy motivates us to quantify the level of anisotropy in gas-solid flows extracted from

our PR-DNS data. These anisotropy results in conjunction with the model already proposed

for gas-phase velocity fluctuations (Tenneti et al., 2012) can be used to develop a model for the
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gas-phase Reynolds stress in gas-solid flows.

The rest of the paper reads as follows. In Section 3.2 the numerical method is described.

In Section 3.3 the interaction of initial turbulence and particle assemblies in homogeneous

systems is addressed. In Section 3.4 the simulations of freely evolving suspensions are presented.

In Section 3.5 the anisotropy of the Reynolds stress is examined, followed by conclusions in

Section 3.6.

3.2 Numerical method

Numerical investigation of ga-solid flow with particles larger than the Kolmogorov length

scale requires PR-DNS. Several numerical methods have been developed for PR-DNS of gas-

solid suspensions (Johnson and Tezduyar, 1997; Peskin, 2002; Prosperetti and Oguz, 2001).

In this study, we employ the Particle-Resolved Uncontaminated Fluid Reconcilable Immersed

Boundary Method (PUReIBM) introduced by Tenneti et al. (2010), which has been successfully

used to extract computational drag laws (Tenneti et al., 2011), and quantify gas-phase velocity

fluctuations (Tenneti et al., 2012).

PUReIBM utilizes a regular Cartesian mesh wherein the particle surface is described by a

discrete number of points. No-slip and no-penetration boundary conditions (BC) are imple-

mented at these points by adding a forcing term to the momentum equation and generating

a fictitious flow inside each particle such that the relative velocity of the fluid comes to rest

with respect to the particle motion. The instantaneous mass and momentum equations that

are solved in PUReIBM are

∇ · u = 0, (3.1)

and

∂u

∂t
+ S = − 1

ρ(f)
g + ν(f)∇2u +

1

ρ(f)
f −Af , (3.2)

respectively, where u is the instantaneous velocity, S = ∇ · (uu) is the convective term in

conservative form, g is the pressure gradient, and f is the immersed boundary (IB) forcing

term that accounts for the presence of particles by ensuring the no-slip and no-penetration

BCs at the particle-fluid interface. The IB forcing in PUReIBM is non-zero only inside the
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solid particle. Thus, the equations in the fluid phase are unmodified and the solution in the fluid

phase is not contaminated due to the IB forcing. The simulation of freely evolving suspension

in PUReIBM is carried out in an accelerating frame of reference that moves with the mean

velocity of particles. In Eq. 3.2 Af accounts for the acceleration of the frame of reference

(Tenneti et al., 2010).

The computation of IB forcing in PUReIBM is similar to the direct forcing method proposed

by Yusof (1996). The IB forcing at the (n+ 1)th time-step is specified to cancel the remaining

terms in the momentum conservation and force the velocity to its desired value udi at that

location:

fn+1 = ρ(f) ud − un

∆t
+ ρ(f)Sn + gn − µ(f)∇2un + ρ(f)Af , (3.3)

The governing equations in PUReIBM are solved by imposing periodic BCs on fluctuating

variables at the boundaries of the computational domain. The velocity field is decomposed

into a spatially uniform mean flow that is purely time-dependent and a fluctuating velocity

field u′ that is periodic, i.e.,

u(x, t) = 〈u〉V (t) + u′(x, t), (3.4)

where the volumetric mean velocity

〈u〉V (t) =
1

V

∫
V

u(x, t)dv, (3.5)

is obtained by averaging the velocity field over the entire computational domain. Similar

decompositions can be written for the non-linear term S, pressure gradient g, and immersed

boundary forcing f terms as well. Substituting the above decompositions in Eqs. 3.1 and 3.2,

followed by averaging over the entire computational domain yields the volume-averaged mass

and momentum conservation equations. Since the volumetric means are independent of spatial

location, mean mass conservation is trivially satisfied. The mean momentum balance in the

whole domain is

ρ(f)d 〈u〉V
dt

= −〈g〉V + 〈f〉V − ρ
(f)Af , (3.6)

where the volume integrals of convective and diffusive terms are zero because of periodic BCs.

The mean IB forcing term 〈f〉 is computed by volume-averaging the IB force specified in Eq. 3.3
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over the region V. The mean pressure gradient 〈g〉 is computed such that we obtain the desired

flow rate.

Evolution equations for the fluctuating variables are derived by subtracting Eq. 3.6 from

Eq. 3.2. Due to the periodicity of the fluctuating fields, a pseudo-spectral method is used

with Crank-Nicolson scheme for the viscous terms and an Adams-Bashforth scheme for the

convective terms. A fractional time-stepping method based on Kim and Moin’s approach (Kim

and Moin, 1985) is used to advance the fluctuating velocities in time. The principal advantage

of the PUReIBM approach is that it enables the use of regular Cartesian grids to solve for flow

past arbitrarily shaped moving bodies without the need for costly remeshing. In addition, the

regularity of the mesh simplifies the parallelization of PUReIBM.

The salient feature of PUReIBM that distinguishes it from other IB methods is that the IB

forcing in PUReIBM is non-zero only inside the solid phase and the fluid-phase is uncontami-

nated by the IB forcing. Therefore the velocity and pressure in the fluid phase is a solution to

the unmodified Navier-Stokes equation. In addition, the hydrodynamic force experienced by

a particle is computed directly from the stress tensor at the particle surface that is obtained

from this uncontaminated fluid flow solution. This feature enables us to directly compare the

DNS solution with any random-field theory of multiphase flow (Garg et al., 2011; Tenneti et al.,

2011).

Garg et al. (2011) and Tenneti et al. (2011) have shown that PUReIBM is numerically

convergent and accurate for DNS of gas-solid flows. The method is validated through a com-

prehensive set of tests: (i) flow past an isolated sphere (ii) Stokes flow past SC and FCC

arrangements (ranging from dilute to close-packed limit) compared with the boundary-integral

method of Zick and Homsy (1982), (iii) Stokes flow past random arrays of monodisperse spheres

compared with LBM simulations of van der Hoef et al. (2005), (iv) moderate to high Reynolds

numbers (Rem = 300) in SC and FCC arrangements compared with LBM simulations of Hill

et al. (2001), and (v) high Reynolds number flow past random arrays of monodisperse spheres

with ANSYS–FLUENT CFD package.
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Figure 3.1 Evolution of k(f) normalized with mean flow energy. Symbols (5) correspond
to the simulation initialized with an isotropic turbulence. Symbols (4) represent
simulation of perturbed velocity field. Symbol (©) shows the steady value of pseu-
do-turbulence simulation. Symbol (�) shows the value from the correlation 3.10.

3.3 Gas-phase velocity fluctuations in steady flow past fixed particle

assemblies

While the evolution of gas-phase velocity fluctuations due to particles has been studied for

zero mean slip (Zhang and Prosperetti, 2005), the mean slip velocity between the phases is

non-zero in fluidized beds. PR-DNS of Tenneti et al. (2012) showed the existence of significant

gas-phase velocity fluctuations in homogeneous gas-solid systems initialized with a uniform flow

under an imposed mean pressure gradient. However, the study did not address the influence of

initial turbulence on k(f). Xu and Subramaniam (2010) studied the interaction of a turbulent

upstream flow with a fixed particle assembly in an attempt to reproduce the experimental

findings of Moran and Glicksman (2003). In their study the upstream flow is initialized with

isotropic turbulence and drawn through a uniform configuration of fixed particles by imposing

a mean constant pressure gradient. This flow is inhomogeneous in the mean flow direction

but gas-phase velocity fluctuations reach a constant value within three particle diameters of

entering the bed. The significant result of this study is the enhancement of turbulence as it

interacts with solid spheres of the fixed bed.

In the current study, we simulate initially turbulent flow in fixed particle assemblies to

quantify the relative magnitude of gas-phase velocity fluctuations arising from turbulent and
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pseudo-turbulent sources. A uniform distribution of non-overlapping spheres is generated using

the Matérn hard-core point process (Stoyan et al., 1995). This is essentially a Poisson point

process for particle centers from which overlapping spheres have been removed using an ap-

proach called dependent thinning. In our study, the particle configurations correspond exactly

to the uniform distribution in Xu and Subramaniam (2010). To address the level of turbulent

and pseudo-turbulent gas-phase velocity fluctuations we consider three types of simulations as

follows:

1. Case I initialized with a non-turbulent uniform laminar flow

2. Case II initialized with an isotropic turbulent flow

3. Case III initialized with the steady solution of Case I to which the initial isotropic tur-

bulence of Case II is added

The simulations start by imposing a mean pressure gradient along the mean flow such that

the Reynolds number reaches the desired value. The Reynolds number based on the mean slip

velocity is defined as

Rem =
| 〈W〉 | (1− φ)dp

ν(f)
, (3.7)

with 〈W〉 being the mean slip velocity. The mean slip Reynolds number is 50 for all cases.

Detailed information of flow parameters is provided in Table 3.1.

The energy in the gas-phase velocity fluctuations k(f) is computed by ensemble-averaging

over multiple independent realizations corresponding to different particle configurations:

k(f) =
1

M

M∑
µ=1

k(f)
µ , (3.8)

Table 3.1 The numerical and physical parameters of turbulent/pseudo-turbulent simulations.

φ Rem Reλ dp/η dp/∆x L/dp
Case I: pseudo-turbulent 0.05 50 − − 20 12.5

Case II: turbulent 0.05 50 12 5 20 12.5

Case III: Case Is.s.+ iso. turb. 0.05 50 − − 20 12.5
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where the number of realizationsM is 4 for all cases. The gas-phase fluctuating velocity energy

of each realization k
(f)
µ is

k(f)
µ =

1

2V (f)

∫
V(f)
µ

u
′′(f)
i u

′′(f)
i dV, (3.9)

with u
′′(f)
i being the gas-phase velocity fluctuations defined as u

(f)
i −

〈
u

(f)
i

〉
, V(f)

µ being the

region occupied by gas-phase in µth realization, and V (f) is the gas-phase volume.

The first verification we perform is comparing the level of pseudo-turbulent gas-phase veloc-

ity fluctuations with a correlation to PR-DNS data for slightly higher volume fractions. Using

PR-DNS in the range 0.1 ≤ φ ≤ 0.5 and 0.01 ≤ Rem ≤ 300, Tenneti et al. (2012) showed that

the energy in pseudo-turbulent velocity fluctuations is characterized by the following correlation

k(f)

E(f)
= 2φ+ 2.5φ(1− φ)3exp

(
−φRe1/2

m

)
, (3.10)

with E(f) being the mean flow energy defined as 〈W〉 · 〈W〉 /2. Although there is no simulation

data at φ = 0.05 in that work, Fig. 3.1 shows that the value obtained from Eq. 3.10 corre-

sponding to φ = 0.05 for Case I is 0.18, which is in good agreement (less than 10% difference)

with the steady value of k(f) from our simulation.

The initial isotropic turbulence in Case II is generated by the method described by Rogallo

(1981) for a Taylor microscale turbulent Reynolds number Reλ of 12 with the energy spectrum

function given by Pope (2000). The corresponding Kolmogorov length scale is selected such

that the ratio dp/η is 5. Fig. 3.1 also indicates that for Case II, the level of k(f) starts from the

specified initial isotropic turbulence level and increases to the steady state pseudo-turbulent

value. The data reveals that the velocity fluctuations arising from the particles in gas-phase

are much higher than the turbulent velocity fluctuations for Reλ = 12, and the principal

contribution to the gas-phase velocity fluctuations is the pseudo-turbulent part.

Since in this study, the configurations and simulation parameters are the same as those

chosen by Xu and Subramaniam (2010), we can compare the k(f) between homogeneous simu-

lations of PUReIBM and inflow/outflow simulations of Xu and Subramaniam (2010). In their

study, the flow is inhomogeneous along the flow direction and k(f) is reported along the mean

flow direction. The level of k(f) increases from the beginning of the bed and represents a

100% increase from the entrance of particle bed and reaches a constant value after an entrance
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Figure 3.2 The equivalent Taylor microscale turbulent Reynolds number which generates the
same pseudo-turbulent level of velocity fluctuations observed in gas-solid flows.
The figure corresponds to dp/η = 5.

length of 3dp. Our homogeneous simulation results are similar for Case II where normalized

k(f) starts from an initial value of 0.1 and reaches approximately twice its initial value (0.19) at

steady state. This indicates that the enhancement observed by Xu and Subramaniam (2010)

is mainly due to the pseudo-turbulent velocity fluctuations, and the steady state value can be

characterized by flow parameters φ and Rem as Eq. 3.10.

From these results, it is clear that the turbulent velocity fluctuations will only be important

if they are of the same level as, or higher than, the pseudo-turbulent velocity fluctuations.

Therefore, it is interesting to determine the Taylor microscale Reynolds number that generates

a level of initial turbulence comparable to the steady value of k(f), and to ascertain its scaling

with φ, dp/η, and Rem. The equivalent Reλ is determined by using the isotropic turbulence

scaling relations in single-phase turbulence (Pope, 2000), and employing the relation between

ReL and Reλ, which is Reλ = (20ReL/3)1/2. In this context, the turbulent Reynolds number

ReL is related to the large eddy and dissipative length scales by the expressions ReL = k1/2L/ν

and Re
−3/4
L = η/L, respectively. The elimination of large eddy length scale L between these

relations, and substitution of single-phase k by the pseudo-turbulent level of k(f) leads to an

expression for ReL as

Re
1/2
L =

k(f)η2

ν2
. (3.11)

The use of Eq. 3.10 for the level of k(f) in above equation and expressing ReL in terms of Reλ,

a final expression for the equivalent Taylor microscale turbulent Reynolds number is obtained
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as

Reλ =

√
20

3

{
φ+ 1.25φ(1− φ)3exp

(
−φRe1/2

m

)}( η

dp

)2( Rem
1− φ

)2

. (3.12)

This expression shows that the equivalent Reλ is a function of solid volume fraction, mean slip

Reynolds number, and particle diameter to Kolmogorov length scale ratio. The dependence

of equivalent Reλ on φ is through the expression for the pseudo-turbulent gas-phase velocity

fluctuations k(f)/E(f) in Eq. 3.10. Since this k(f) increases with volume fraction (Tenneti et al.,

2012), the equivalent Reλ also increases. In addition, the quadratic dependence of Reλ on Rem

indicates that the large eddies associated with the flow structures due to the presence of particles

contribute increasingly to the equivalent isotropic Reλ. The dependency of Reλ on η/dp is also

represented in Eq. 3.12 by a quadratic term. To observe the influence of dp/η, we introduce the

definition of the Kolmogorov length scale η = (ν3/ε)1/4 to obtain dp/η = (εd4
p/ν

3)1/4, which

shows that increase of dp/η causes the dissipation of kinetic energy ε to increase dramatically.

By maintaining other parameters constant, the large eddy length scale decreases since it is

defined as L = k3/2/ε. Thus, the decrease of L results in the attenuation of the turbulent

Reynolds number ReL, which implies a lower equivalent Reλ. To gain insight into the behavior

of equivalent Reλ, a contour plot of Reλ for dp/η = 5 is presented in Fig. 3.2. This figure reveals

that for relatively dense flows at moderate or high mean slip Reynolds numbers, the velocity

fluctuations induced by particles are equivalent to high levels of single phase turbulence. Since

most PR-DNS of isotropic turbulence are limited to Reλ ≈ 30 (Burton and Eaton, 2005; Zhang

and Prosperetti, 2005), this indicates that even a moderate value of mean slip velocity can

easily generate high pseudo-turbulent velocity fluctuations compared to the level of turbulent

fluctuations (initial or upstream) in the gas phase.

Case III is basically used to examine the relaxation of turbulence in particle-laden flows.

The evolution of k(f) for Case III in Fig. 3.1 shows that the excess amount of k(f) decays and the

pseudo-turbulent steady state level of k(f) is recovered. These results showing both attenuation

and enhancement of turbulence depending on the initial level of velocity fluctuations indicate

that for this choice of φ and Rem, initial turbulent motions in the gas-phase do not influence the

steady value of k(f), which corresponds to the pseudo-turbulent fluctuations arising from the

interaction of particles with the mean flow. The contour plot in Fig. 3.2 is useful in quantifying
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when initial turbulence or the pseudo-turbulent contribution dominates the steady value of k(f).

Since the mechanism for generation and dissipation of these contributions to k(f) are different,

this provides useful information for the development of predictive multiphase turbulence models

in this regime of gas-solid flow. Although the pseudo-turbulent contribution to k(f) studied

in this section is comprehensively quantified by Tenneti et al. (2012), the influence of particle

movements on k(f) is neglected. Thus, in the following section we study the effect of particle

motion on the kinetic energy of the carrier flow.

3.4 Gas-phase velocity fluctuations in freely evolving suspensions

Although fixed beds are good approximations to the particle-laden flows at high particle

Stokes number, in reality each sphere moves with an acceleration arising from hydrodynamic

and collisional forces. Simulation of freely evolving suspensions enables us to study the effect of

physical parameters such as solid to gas density ratio and coefficient of restitution, in addition

to solid volume fraction and Reynolds number that are used to characterize fixed bed simula-

tions. In freely evolving suspensions, particles move under the influence of hydrodynamic and

collisional forces. In PUReIBM the particles are represented in a Lagrangian frame of refer-

ence at time t by {X(i)(t), V(i)(t) i = 1...Np} with X(i)(t) and V(i)(t) being the position and

velocity of ith particle respectively, and Np being the total number of particles. The position

and translational velocity of ith particle evolve according to Newton’s second law as

dX(i)(t)

dt
= V(i)(t), (3.13)

m
V(i)(t)

dt
= B + F

(i)
h (t) +

Np∑
j=1
j 6=i

F
(c)
ij (t) (3.14)

where B is any external body force, F
(i)
h is the hydrodynamic force (calculated from the velocity

and pressure fields at the particle surface) and F
(c)
ij is the contact force on the ith particle as a

result of collision with jth particle. Particle-particle interactions are treated using soft-sphere

collisions based on a linear spring-dashpot contact mechanics model that was originally pro-

posed by Cundall and Strack (1979) (details are given in Appendix A). The hydrodynamic and
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Figure 3.3 Evolution of k(f) normalized with mean flow energy for elastic particles with dif-
ferent φ and ρ(p)/ρ(f).

contact forces computed at each time step are then used to evolve the position and translational

velocity of particles by means of Eqs. 3.13 and 3.14, respectively.

The formulation of PUReIBM in an accelerating frame of reference enables the simulation

of not just sedimenting suspensions, but arbitrary mean slip values while maintaining average

particle motion at rest in the accelerating frame. In other words, the use of accelerating frame

of reference facilitates examining the influence of each flow parameter while maintaining other

parameters constant.

In our freely evolving suspension study, all the simulations are performed at Rem = 20 with

two independent realizations for each case. The influence of solid volume fraction is studied

by simulating two volume fractions φ = 0.1 and 0.2. The simulations are initialized with a

uniform mean flow for the gas phase and zero granular temperature for the solid phase, and

carried out until a steady state solution is obtained in terms of k(f). To investigate the

effect of particle to gas density ratio we simulated density ratios ρ(p)/ρ(f) = 100 and 1000.

The comparison of k(f) for the two density ratios with elastic particles indicates that the level

of gas-phase velocity fluctuations is not influenced by particle densities significantly as shown

in Fig. 3.3. In this figure k(f) increases rapidly and then attains a relatively constant value.

The evolution of k(f) is also compared with fixed bed results at the same Reynolds number

and solid volume fractions represented by dashed lines in the figure. The difference of k(f)

in freely evolving suspensions from its value in the corresponding fixed bed is less than 10%.
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(a) ρ(p)/ρ(f) = 100 (b) ρ(p)/ρ(f) = 1000

Figure 3.4 Comparison of k(f) normalized with mean flow energy among elastic and inelastic
cases.

This establishes the validity of using fixed bed simulations as an approximation to high Stokes

number suspensions undergoing elastic collisions, which was employed in earlier studies (Xu

and Subramaniam, 2010; Tenneti et al., 2012).

In freely evolving suspensions with inelastic particle collisions, the energy of the system

is dissipated by collisional dissipation among particles as well as the viscous dissipation of

the carrier flow. To investigate the effect of the coefficient of restitution (COR) on k(f), we

selected three values 1.0, 0.9, and 0.7 for this parameter. The comparison of k(f) for particles

with different CORs, presented in Fig. 3.4, indicates that k(f) is not very sensitive to COR

and the differences are not statistically significant, especially for the lower volume fraction. In

addition, as Figs. 3.4(a) and 3.4(b) show, the density ratio has negligible effect on the level of

k(f) for inelastic particles. Similar to the results of elastic particles, the level of k(f) is in good

agreement with those of fixed beds with a maximum difference of 10% for the higher volume

fraction. The weak dependence of k(f) on inelasticity of particles further shows the validity of

using fixed beds as an approximation to high Stokes number suspensions.

The independence of k(f) on COR indicates that these suspensions belong to a regime

that is dominated by viscous dissipation as opposed to collisionally dissipative regime (Sangani

et al., 1996). To precisely characterize the regime of the gas-solid flows examined in this study,

we quantify the ratio of time taken by gas-phase forces to affect particle motions tfluid to the



www.manaraa.com

30

average time between collisions tcoll (Wylie et al., 2003). The fluid timescale is defined as

tfluid =

√
3T

σA
, (3.15)

where σA characterizes the standard deviation in particle accelerations. The mean collisional

timescale is computed from the inverse of Enskog collisional frequency (Chapman and Cowling,

1953), that is

tcoll =
2

G
√
T
, (3.16)

with G defined as 8d2
pn
√
π/mg(dp) in which n is the particle number density, and g(dp) is the

radial distribution function of particle assembly at contact. From Eqs. 3.15 and 3.16, the fluid

to collisional timescale ratio is

tfluid

tcoll
=

√
3GT

2σA
, (3.17)

which is quantified for the cases simulated in this study, and ranges from 0.19 to 0.9. This

confirms that the time required for the gas-phase stresses to significantly influence the particles

motion is less than the mean time between the collisions (tfluid < tcoll). In other words, these

gas-particle systems are dominated by viscous forces, and the energy loss due to collisional

dissipations does not affect significantly the evolution of k(f). Thus, the energy of gas-phase

fluctuating velocities evolves in a manner similar to fixed bed assemblies.

To better understand the transfer of energy between two phases for freely moving particles,

it is useful to investigate the evolution equations of fluctuating energies in both gas and solid

phases. This also helps understand the effect of COR through the collisional dissipation. The

evolution of k(f) for a homogeneous suspension is given by (Xu and Subramaniam, 2006; Pai

and Subramaniam, 2009; Tenneti et al., 2012)

ρ(f)(1− φ)
d

dt
k(f)︸ ︷︷ ︸

unsteady term

=
〈
u
′′(f)
i τjin

(f)
j δ

(
x− x(I)

)〉
︸ ︷︷ ︸

Π(f)

− 2µ(f)
〈
I(f)SijSij

〉
︸ ︷︷ ︸

ε(f)

, (3.18)

where ρ(f) is the gas-phase density, τ is the stress tensor, n(f) is the unit normal vector

pointing outward from the gas phase into the solid phase, δ
(
x− x(I)

)
is the Dirac delta function

representing the gas-solid interface, µ(f) is the gas-phase dynamic viscosity, and S is the strain

rate tensor. The interphase turbulent kinetic energy (TKE) transfer Π(f) in Eq. 3.18 arises
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from the fluctuating velocity-stress tensor correlation which is non-zero at gas-solid interface

due to the Dirac delta function. The viscous dissipation in the gas phase ε(f) is a sink of

energy since SijSij is always a positive quantity (Tenneti et al., 2012). On the other hand, the

evolution equation of solid-phase fluctuating kinetic energy k(p) for a homogeneous system is

ρ(p)φ
d

dt
k(p)︸ ︷︷ ︸

unsteady term

=
〈
u
′′(p)
i τjin

(p)
j δ

(
x− x(I)

)〉
︸ ︷︷ ︸

Π(p)

− Γcoll︸︷︷︸
collisional dissipation

. (3.19)

In this equation, k(p) is defined as
〈
u′′(p) · u′′(p)

〉
/2 where u′′(p) is the solid-phase velocity being

u(p)−〈u〉. In addition, ρ(p) is the solid-phase density, and n(p) is the unit normal vector pointing

outward from the particle into the gas phase. Note that the unit normal vectors are related to

each other as n(p) = −n(f). It has been shown that the correlation of the fluctuating particle

acceleration with the fluctuating particle velocity Π(p) acts as both source and sink of particle

kinetic energy (Koch, 1990; Koch and Sangani, 1999; Tenneti et al., 2010).

The kinetic energy of the two-phase mixture em is defined as ρ(f)(1 − φ)k(f) + ρ(p)φk(p).

The mixture kinetic energy evolution equation is obtained by adding Eqs. 3.18 and 3.19 as

dem
dt

= Π(f) + Π(p) − ε(f) − Γcoll. (3.20)

The principle of conservative interphase TKE transfer introduced by Xu and Subramaniam

(2007) implies that the summation of interphase TKE transfer between the two phases (Π(f) +

Π(p)) reduces to the inner product of the mean slip 〈W〉 and the mean momentum transfer

〈F〉, such that

dem
dt

= 〈Wi〉 〈Fi〉︸ ︷︷ ︸
Πm

−ε(f) − Γcoll. (3.21)

For random assemblies, since the mean slip velocity is aligned with the mean interphase mo-

mentum transfer (Hill et al., 2001; Tenneti et al., 2010), the resultant interphase TKE transfer

Πm is positive and represents a source of energy, while the viscous dissipation and the collisional

dissipation are sinks of energy. At steady state the terms on the right-hand-side of Eq. 3.21

should balance each other. The Πm term is computed directly from the DNS data by inner

product of the mean slip and the mean drag force measured from the integration of the stress

tensor at particle surface. The viscous dissipation is also computed directly from the DNS by
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the expression given by Tenneti et al. (2012), that is

ε(f) =
1

V (f)

∫
V
I(f)2µSijSijdV. (3.22)

The collisional dissipation of the system is estimated from the expression given by Sangani

et al. (1996) as

Γcoll =
24

dpπ1/2
(1− e) ρ(p)φg(dp)T

3/2 (3.23)

where e is the COR.

The budget analysis of Eq. 3.21 in Fig. 3.5 indicates that for these suspensions that start

from rest and attain a relatively low steady state granular temperature, the principal bal-

ance of terms is between Πm and ε(f), while Γcoll is negligible. The balance of energy implies

that the level of collisional dissipation in gas-solid suspensions with low granular temperature

(ReT /Rem ≈ 0.12) is not significant compared to interphase TKE transfer and viscous dis-

sipation. We also simulated cases with higher initial granular temperature (twice the steady

Reynolds number based on granular temperature; results not shown here) and found that al-

though Γcoll is initially higher than at the steady state, it does not affect the steady k(f) and

k(p). Thus, the inelasticity of particles does not influence the overall level of energy in the

system and the level of k(f) will be similar for flows with different COR. This finding suggests

that the model proposed for fixed beds is applicable to freely evolving suspensions of gas-solid

flow as well. In the following section, we quantify the anisotropy of the gas-phase Reynolds

stress in fixed beds.

3.5 Reynolds stress tensor of pseudo-turbulent gas-phase velocity

fluctuations

The gas-phase Reynolds stress is defined as

R
(f)
ij =

〈
u
′′(f)
i u

′′(f)
j

〉
, (3.24)

and its trace represents the level of gas-phase velocity fluctuations k(f). The presence of par-

ticles introducing anisotropy in the gas-phase Reynolds stress modifies the structure of the
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(a) ρ(p)/ρ(f) = 100 (b) ρ(p)/ρ(f) = 1000

Figure 3.5 The balance of mixture energy equation terms (Eq. 3.21) normalized with
µ(f)(| 〈W〉 | /dp)2. Πm (©), ε(f) (�), Γcoll (4); hollow symbols (φ = 0.1), filled
symbols (φ = 0.2).

carrier phase (Uhlmann, 2008; Xu and Subramaniam, 2010; Tenneti et al., 2012). The gas-

phase anisotropy tensor

b
(f)
ij =

R
(f)
ij

2k(f)
− 1

3
δij , (3.25)

is quantified for the fixed-bed particle configurations considered in this study. It is observed in

aforementioned studies that flow structures extend in the streamwise direction. Therefore, it is

logical to compute the Reynolds stress and the corresponding anisotropy along the streamwise

(parallel to mean slip) and spanwise (perpendicular to mean slip) directions which are presented

in Figs. 3.6(a) and 3.6(b), respectively. The results indicate that the cross-correlation of velocity

fluctuations are negligible (not shown here) and the normal component in the parallel direction

is dominant compared to the other normal components in the perpendicular direction. Hence,

the state of pseudo-turbulent gas-phase velocity fluctuations is axisymmetric (Pope, 2000).

An accurate model for the Reynolds stress should capture the behavior of anisotropy with

flow parameters. Fig. 3.6 indicates that the level of anisotropy increases with Rem from Stokes

flow to moderate Reynolds numbers (ranging from 10 to 40) and then smoothly decreases. We

hypothesize that this variation in anisotropy is related to the ratio of the length scale associated

with gas-phase velocity fluctuations to the local average interparticle spacing. These length

scales are quantified using our simulations.
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(a) (b)

Figure 3.6 Deviatoric tensor components are shown for different φ and Rem obtained from
fixed bed simulations. The shaded region shows where the maximum of anisotropy
occurs.

Increase of Reynolds number from low Rem flow initiates the separation of boundary layer

around particles and a standing eddy forms behind spheres with a characteristic length (Prup-

pacher et al., 1970) which is a source of anisotropy in gas-phase Reynolds stress (Yusof, 1996;

Uhlmann, 2008). However, defining an appropriate length scale for gas-phase velocity fluctua-

tions in a random particle assembly is not straightforward since the wakes are affected by the

presence of neighbor particles. We use the Eulerian two-point correlation of gas-phase velocity

fluctuations to define a characteristic length for gas-phase velocity fluctuations L‖ as follows:

L‖ =
1

R‖(0)

∫ ∞
0

R‖(r)dr, (3.26)

where R‖(r) is

R‖(r) =
1

V (f)

∫
V(f)

u
′′(f)
‖ (x) · u′′(f)

‖ (x− r)dV, (3.27)

the two-point correlation in the parallel direction. This gas-phase velocity fluctuations length

scale shown in Fig. 3.7 decreases with Rem due to the fact that the flow structures become

finer and less correlated to other surrounding structures. In addition, increase of solid volume

fraction makes the gas-phase velocity fluctuations less spatially correlated due to the influence

of near particles, and hence the length scale decreases.

We use the radial distribution function g(r) to define a characteristic local interparticle
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(a) φ = 0.1 (�), φ = 0.2 (4) (b) φ = 0.3 (�), φ = 0.4 (5)

Figure 3.7 Symbols show length scale of gas-phase velocity fluctuations, while the straight
lines show the corresponding local interparticle spacing. The shaded region shows
where the maximum of anisotropy occurs.

Figure 3.8 Radial distribution function estimated from 100 realizations for different φ.

spacing within a neighborhood of a test particle. Note that other studies used a similar ap-

proach to compute the nearest neighbor distance for point particles (Hertz, 1909) and finite

size particles (Torquato et al., 1990) in random particle arrangements. The radial distribution

function is shown in Fig. 3.8 for different volume fractions. The radial distribution is the proba-

bility of finding a particle at separation r given that there is a particle at the coordinate origin.

By assuming a spherical shell of volume 4πr2δr at separation r, the number of particles in the

shell is 2πNpng(r)r2δr. Thus, we compute the local interparticle spacing of the suspension
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using the expression

Lint
dp

=
1

dp

∫ R
dp
g(r)r2lf(l)dr∫ R

dp
g(r)r2f(l)dr

, (3.28)

which is a weighted average of distances among particles in a spherical shell between the

minimum separation dp and R. In Eq. 3.28, l is the surface to surface distance defined as

r − dp, and f(l) is a weight function. We choose R as the second peak of g(r), which includes

all particles in the local neighborhood of the test particle. The weight function is assumed

to have the form 1/lp with p ≥ 0. Note that the choice of p = 0 causes Lint to be equally

weighted by neighbor particles, while choosing higher values for p preferentially weights the

most proximate particles. We select p = 1, a value that takes into account the importance of

all particles in the region between dp and R in a manner where proximate particles contribute

more to the local interparticle spacing.

The results indicate that the local interparticle spacing (shown as straight lines in Fig. 3.7)

intersect the length scales of gas-phase velocity fluctuations at the Reynolds numbers where

the anisotropy starts to decrease (Fig. 3.6). At low Reynolds numbers, flow structures formed

behind particles elongate with Rem that give rise to the increase of anisotropy. After moderate

Reynolds numbers (10 ≤ Rem ≤ 40) the wakes become as large as the gaps among particles and

are broken up due to interaction with neighbor spheres. Thus, the anisotropy is characterized

by the ratio of gas-phase velocity fluctuations length scale to local interparticle spacing. The

break up of elongated structures redistributes the fluctuating velocities energy among Reynolds

stress components and decreases the anisotropy.

It is also observed that the increase of solid volume fraction causes an attenuation in the level

of anisotropy. Increase of solid volume fraction lessens the local interparticle gaps and does not

allow the formation of distinct wake wake structures, leading to the decrease of anisotropy. This

is confirmed in Fig. 3.7 since the length scale of gas-phase velocity fluctuations decreases with

volume fraction. Breault et al. (2008) also reported that the axial solid dispersion coefficient

of particles in a particle-laden flow decreases with volume fraction, which is interpreted as

indication that R|| decreases, while R⊥ increases, and our data is in agreement with this trend

observed in experiments.
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3.6 Conclusion

In this work we characterized the fluctuations in gas-phase velocity using PR-DNS of steady

flow at finite Reynolds number (based on the mean slip velocity) in fixed particle beds and freely

evolving gas-solid suspensions. The evolution of initially isotropic turbulence in a fixed particle

bed with mean slip reveals that for the solid volume fraction and Reynolds number considered in

this study, the gas-phase velocity fluctuations arising from the presence of particles always relax

to their pseudo-turbulent level quantified by Tenneti et al. (2012), irrespective of the level of

initial turbulence. The initial level of turbulence required to match the level of pseudo-turbulent

velocity fluctuations is estimated to be very high, e.g. at Rem = 100, φ = 0.2 and dp/η = 5,

the equivalent Reλ is 320. Therefore, the principal mechanism for producing gas-phase velocity

fluctuations in particle-laden flows with dp/η > 1 e.g. fluidized beds, is the interaction of gas

and solid phases through the mean slip velocity. Simulations of freely evolving suspensions

indicate that k(f) is a strong function of volume fraction, similar to observations in fixed beds.

The change of particle density for high Stokes number particles does not significantly change

the level of k(f) since the time required for the particle configuration to change is longer than

the momentum relaxation time. In addition, the variation of inelasticity does not substantially

affect k(f) since viscous dissipation in these systems dominates collisional dissipation. The

current study confirms previous findings (Uhlmann, 2008; Xu and Subramaniam, 2010; Tenneti

et al., 2012) that the Reynolds stress is highly anisotropic and axisymmetric along the mean

slip. Over a wide range of volume fraction (0.1 ≤ φ ≤ 0.4) the anisotropy increases with

Reynolds number as the flow structures form and elongate in the mean slip direction. As Rem

increases in the range 10 ≤ Rem ≤ 40, these structures are affected by neighbor particles

that causes them to decorrelate over length scales smaller than local interparticle spacing,

resulting in attenuation of anisotropy. Increase of the volume fraction also decreases the local

interparticle gaps and flow structures are broken up leading to attenuation of anisotropy. This

work gains insight into the nature of gas-phase velocity fluctuations in gas-solid flows that can

be used to propose a model for the Reynolds stress due to the pseudo-turbulent gas-phase

velocity fluctuations in homogeneous suspensions.
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK

4.1 Conclusion

In this study, particle-resolved direct numerical simulation (PR-DNS) was used to address

the behavior of gas-phase velocity fluctuations in gas-solid flows, in particular the fluidized

beds. The specific findings of the study are as follows:

1. The contribution of turbulent and pseudo-turbulent velocity fluctuations to the steady

level of k(f) was determined by simulating a homogeneous gas-solid suspension initialized

with both uniform and turbulent flows. The results show that the velocity fluctuations

in such systems are due to the interaction of large particles with the mean slip velocity,

and that the pre-existing turbulence in the carrier flow is insignificant.

2. A high level of pre-existing turbulence is required to generate the same level of pseudo-

turbulent gas-phase velocity fluctuations in gas-solid flows.

3. PR-DNS of freely evolving suspensions with elastic particles indicate that the level of

k(f) is in good agreement with the fixed bed values at the same solid volume fraction and

Reynolds number for high Stokes number particles. The main reason is that the time

required for particle configuration to change is longer than the momentum relaxation

time.

4. The variation of inelasticity of particles in freely evolving suspensions does not influence

the level of k(f). The balance of energy is generally between viscous dissipation and

interphase TKE transfer term, and the low level of collisional dissipation is negligible.

Therefore, flow is dominated by viscous forces rather than the collisional forces.
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5. The gas-phase Reynolds stress tensor is decomposed into isotropic and anisotropic parts.

The Reynolds stress is highly anisotropic along the mean slip velocity and becomes axi-

symmetric.

6. Anisotropy of gas-phase velocity fluctuations increases with the Reynolds number to the

range 10 ≤ Rem ≤ 40, and then decreases. This observation is characterized by local

interparticle spacing and the length scale of gas-phase velocity fluctuations.

7. Anisotropy decreases with increasing φ since the wake structures responsible for anisotropy

in the gas-phase are broken up by the presence of particles at higher solid volume frac-

tions.

4.2 Future work

In this study, the importance of particle-induced gas-phase pseudo-turbulent velocity fluctu-

ations at steady state is addressed. By investigating the evolution of energy balance among the

terms in the transport equation of k(f) in canonical gas-solid flows, a better understanding of

mechanisms governing the flow characteristics is obtained. The data collected from this study

can be incorporated into any multiphase turbulent flow model, such as equilibration of energy

model (Xu and Subramaniam, 2006), consisting of evolution equations for fluctuating veloci-

ties and dissipation rates in both phases. In this study we considered uniform configuration

of particle assemblies. It is of interest to study the effect of particle clusters on the gas-phase

velocity fluctuations and characterize the flow behavior of these mesoscale structures. In addi-

tion, current homogeneous suspensions can be extended to homogeneous shear flows where the

mean velocity gradients are non-zero. The existence of the mean velocity gradient introduces

a new mechanism for generating gas-phase velocity fluctuations. The results shed additional

light on the physics of gas-solid flow in fluidized beds, and can be used for model development.
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APPENDIX A. PARTICLE MOTION EQUATIONS IN PUReIBM

In the soft-sphere approach, the contact mechanics between two overlapping particles is

modeled by a system of springs and dashpots in both normal and tangential directions. The

spring causes colliding particles to rebound, and the dashpot mimics the dissipation of kinetic

energy due to inelastic collisions. The spring stiffness coefficients in the tangential and nor-

mal directions are kt and kn, respectively. Similarly, the dashpot damping coefficients in the

tangential and normal directions are ηt and ηn, respectively. The spring stiffness and dashpot

damping coefficients are related to the coefficient of restitution and the coefficient of friction

(Garg et al., 2010).

The particles considered in this study are assumed to be frictionless. Thus the tangential

component of the contact force is zero. Therefore, only normal component of the contact force

Fnij is considered at time t which is given by

Fnij = knδijnij −
m

2
ηnVnij , (A.1)

where δij is the overlap between the particles computed using the relation

δij = dp− | X(i) −X(j) |, (A.2)

and Vnij is the relative velocity in the normal direction that is defined using

Vnij =
[(

V(i) −V(j)
)
· r̂ij

]
r̂ij . (A.3)

The normal vector r̂ij is the unit vector along the line of contact pointing from particle i to

particle j.
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APPENDIX B. CONVERGENCE OF VISCOUS DISSIPATION IN

PUReIBM

The accuracy of a numerical method depends strongly on the independence of results rel-

ative to the computational grid. As mentioned in Chapter 2, convergence of PUReIBM is

analyzed using drag force (Tenneti et al., 2011) and gas-phase velocity fluctuations (Tenneti

et al., 2012). Since the evolution of fluid-phase velocity fluctuations is significantly affected

by viscous dissipation, we focus on the convergence test of ε(f) in this section. A detailed

derivation of k(f) evolution equation for a homogeneous system is presented elsewhere (Xu and

Subramaniam, 2006, 2007; Pai and Subramaniam, 2009; Tenneti et al., 2012). However, for the

sake of completeness, this equation is explained in the following section. Then, the numerical

convergence test results for the dissipation are presented.

B.1 Evolution equation of gas-phase velocity fluctuations in a

homogeneous gas-solid suspension

The kinetic energy of fluctuating velocities is obtained by half the trace of the Reynolds

stress tensor. In an Eulerian-Eulerian approach, the evolution equation of kinetic energy in

phase α is (Pai and Subramaniam, 2009)

φ(α)ρ(α)∂k
(α)

∂t
+ φ(α)ρ(α)

〈
u

(α)
j

〉 ∂k(α)

∂xj
+ φ(α)ρ(α) ∂

∂xj

〈
u
′′(α)
i u

′′(α)
i u

′′(α)
j

〉
=

−φ(α)ρ(α)

〈u′′(α)
i u

′′(α)
j

〉 ∂ 〈u(α)
i

〉
∂xj

+

〈
u
′′(α)
i

∂

∂xj

(
I(α)τji

)〉
+
〈
u
′′(α)
i M

(α)
i

〉
, (B.1)

where 〈.〉 denotes the ensemble average, I(α) is an indicator function being one if the position

lies on phase α, and zero otherwise, and M
(α)
i is the interphase momentum transfer. For a

statically homogeneous gas-solid flow, the spatial derivative of mean quantities is zero. Thus,
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the evolution equation for the kinetic energy of gas-phase velocity fluctuations reduces to

(1− φ)ρ(f)∂k
(f)

∂t︸ ︷︷ ︸
unsteady term

=
〈
u
′′(f)
i M

(f)
i

〉
︸ ︷︷ ︸

Π(f)

+

〈
u
′′(f)
i

∂

∂xj

(
I(f)τji

)〉
︸ ︷︷ ︸

ε(f)

. (B.2)

The first term on the right-hand-side is the gas-phase interphase TKE transfer Π(f), while the

second term is usually modeled as the dissipation of gas-phase velocity fluctuations ε(f).

Interphase TKE transfer is the fluid-phase velocity fluctuations-interphase momentum trans-

fer covariance. For flows with no interphase mass transfer, the interphase momentum transfer

in the gas-phase is

M
(f)
i = −τji

∂I(f)

∂xj
. (B.3)

The interphase momentum transfer can be simplified by using the expression for the gradient

of the indicator function (Drew and Passman, 1998)

∂I(f)

∂xj
= −n(f)

j δ(x− x(I)), (B.4)

where n(f) is the unit normal at the phase interface pointing outward. The Dirac delta function

δ indicates the momentum transfer term is only non-zero at the gas-solid interface. Substituting

Eq. B.4 into Eq. B.3 results in the final expression for the interphase momentum transfer term

as

M
(f)
i = τjin

(f)
j δ(x− x(I)). (B.5)

Conversely, the instantaneous gas-phase and solid-phase velocities are the same at gas-particle

interface, i.e. u(f) = u(p). By decomposing these velocities into the mean and fluctuating parts,

an expression for the gas-phase velocity fluctuation at the interface is obtained as

u
′′(f)
i = u

′′(p)
i +

〈
u

(p)
i

〉
−
〈
u

(f)
i

〉
. (B.6)

We focus on fixed particle assemblies where the particle configuration does not change in

response to hydrodynamic forces, implying that the particle velocity fluctuation
〈
u′′(p)

〉
is zero.

Additionally, by employing the definition of the mean slip velocity 〈W〉 =
〈
u(f)

〉
−
〈
u(p)

〉
, the

fluid-phase velocity fluctuation at gas-particle interface reduces to

u
′′(f)
i = −〈Wi〉 . (B.7)



www.manaraa.com

43

Using Eqs. B.5 and B.7 for the definition of Π(f) and noting that n(f) = −n(p), the interphase

TKE transfer is obtained as〈
u
′′(f)
i τjin

(f)
j δ(x− x(I))

〉
= 〈Wi〉

〈
τjin

(p)
j δ(x− x(I))

〉
, (B.8)

the inner product of the mean slip velocity and the total drag force acting at the particle

surface. The interphase TKE transfer is positive since the mean slip velocity is aligned with

the mean interphase momentum transfer (Hill et al., 2001; Tenneti et al., 2011). Thus, it always

acts as a source of energy in homogeneous suspensions with a finite mean slip.

The covariance of gas-phase fluctuating velocities and divergence of stress tensor in Eq. B.2

is the dissipation of gas-phase velocity fluctuations. Using the chain rule, the dissipation can

be written as 〈
u
′′(f)
i

∂

∂xj

(
I(f)τji

)〉
=

〈
∂

∂xj

(
u
′′(f)
i I(f)τji

)〉
−

〈
I(f)τji

∂u
′′(f)
i

∂xj

〉
. (B.9)

Commuting the averaging and gradient operators and applying statistical homogeneity assump-

tion, the first term on the right-hand-side of the above equation will be zero. The gas-phase

stress tensor τ in the second term can be further dissected into pressure and viscous parts as

τji = −pδij + µ(f)

(
∂ui
∂xj

+
∂ui
∂xj

)
. (B.10)

Thus, the dissipation can be written as〈
u
′′(f)
i

∂

∂xj

(
I(f)τji

)〉
=

〈
I(f)pδij

∂u
′′(f)
i

∂xj

〉
︸ ︷︷ ︸

Γ

−

〈
I(f)µ(f)

(
∂u
′′(f)
i

∂xj
+
∂u
′′(f)
j

∂xi

)(
∂u
′′(f)
i

∂xj

)〉
︸ ︷︷ ︸

Θ

.

(B.11)

This expression shows that the dissipation can be separated into pressure part Γ and viscous

part Θ. Note that the presence of Kronecker delta in Γ invokes the continuity of the fluctuating

velocity field. Thus, the pressure contribution to the dissipation is zero. The Θ term can further

be simplified to obtain 〈
u
′′(f)
i

∂

∂xj

(
I(f)τji

)〉
= −2µ(f)

〈
I(f)sijsij

〉
, (B.12)

where sij is the rate of strain tensor. Since the terms Π(f) and ε(f) are respectively described

in Eqs. B.5 and B.12, the evolution equation of k(f) (Eq. B.2) can be rewritten as

(1− φ)ρ(f)∂k
(f)

∂t
= 〈Wi〉

〈
τjin

(p)
j δ(x− x(I))

〉
− 2µ(f)

〈
I(f)sijsij

〉
. (B.13)
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Due to the importance viscous dissipation in the evolution of k(f), the convergence of ε(f) is

studied in the next section.

B.2 Convergence test

The presence of particles in gas-solid flows changes the mechanism of gas-phase dissipation

(Tenneti et al., 2012). This dissipation is no longer characterized by Kolmogorov scales, unlike

single-phase turbulence. However, it is determined by high velocity gradients close to particle

surface. Thus, it is useful to measure the dissipation at particle surfaces, particularly for

modeling purposes.

Accurate measurement of gas-phase dissipation is very difficult, even in isotropic single-

phase flows (Raffel et al., 2007). Direct measurement of dissipation from experiment is not

possible. For instance, Hwang and Eaton (2006) used a LES analogy technique for dissipa-

tion measurement, assuming that the sub-grid scale energy flux from the integral scale to the

Kolmogorov scale through the inertial sub-range is equal to the dissipation rate. On the other

hand, computation of dissipation at particle surface from particle-resolved methods, such as

PUReIBM, is not straightforward. Limited number of independent realizations causes high

statistical errors (Xu and Subramaniam, 2010), since the sample space for surface measurable

quantities is very small. Additionally, computation of dissipation in spherical coordinate from

the solution data on a Cartesian coordinate is complicated. Since the sample space for volu-

metric measurable quantities is much larger than the surface measurable quantities, it is better

to compute the volumetric dissipation in a region close to particle surface, called near-particle

region. The volumetric dissipation depends on how far the near-particle region is extended

above the particle surface. Accordingly, this region should contain the high velocity gradients

generated in response to the interaction of the mean slip velocity with solid particles.

The importance of viscous dissipation in the evolution of k(f) necessitates the convergence

test study of ε(f). In the following paragraphs, the convergence of viscous dissipation is pre-

sented for homogeneous gas-solid suspensions. The convergence of volumetric dissipation is

studied for simple cubic configuration, and the near-particle volumetric dissipation is quanti-

fied for the random particle configurations considered in this work. Subsequently, quantification
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(a) (b)

Figure B.1 Convergence characteristics of dissipation for simple cubic configuration at
Rem = 50. Fig. B.1(a) shows normalized viscous dissipation, while Fig. B.1(b)
shows Relative error of dissipation with respect to the case Dm = 70.

of viscous dissipation at particle surface with two methodologies is reported.

PR-DNS of simple cubic (SC) configuration is performed at Rem = 50 (similar results

observed for Rem = 20; not represented here) with the range of particle resolution Dm 10–70,

and solid volume fraction φ 0.05–0.4. Since in a statistically homogeneous system, ensemble-

averaging can be estimated by volume-averaging, the viscous dissipation is computed as

ε(f) =
2µ(f)

V (f)

∫
V
I(f)sijsijdV. (B.14)

Quantification of ε(f) for the cases simulated (shown in Fig.B.1) clearly indicates the numerical

convergence of volumetric dissipation with increasing grid resolution. Note that the strain rate

tensor is computed by using the continuous stress field from the PUReIBM data, introducing

error in the estimation of dissipation in cells adjacent to the particle surface (the stress field is

not continuous in real suspensions). However, the volumetric dissipation is not affected due to

the small ratio of volume occupied by these cells to the total volume of the gas phase.

According to Eq.B.12, viscous dissipation is significant in regions where the velocity gradient

is considerable. In gas-solid suspensions, high velocity gradient regions form around particles

due to the presence of a boundary layer. To identify the importance of near-particle dissipation,

we used our PR-DNS data of random particle configurations to compute the ratio of near-

particle dissipation to the total dissipation in the gas phase. The near-particle region is defined

as a confined region between the particle surface and a sphere that is 5% greater in diameter
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Figure B.2 The ratio of near-particle dissipation to the total viscous dissipation in the
gas-phase for homogeneous particle assemblies.

than the particle. Fig. B.2 shows that near-particle dissipation is significant in gas-solid flows.

This figure demonstrates that an increased φ results in an increased ratio for near-particle

dissipation; the near-particle region volume increases compared to the total volume of the gas

phase. In addition, an increase of the Reynolds number intensifies the magnitude of velocity

gradients, causing the enhancement of dissipation. This finding motivates us to investigate the

convergence of ε(f) at particle surface as well.

To compute the local dissipation at the particle surface, we use the definition of ε(f) given

in Eq. B.2. Since the pressure contribution to the dissipation in a statistically homogeneous

suspension is zero, we focus on the viscous contribution, that is

ε
(f)
local = u

′′(f)
i

∂

∂xj

(
2µ(f)I(f)sji

)
. (B.15)

In real gas-solid flows, the velocity field is continuous in the whole domain, while the stress

tensor is discontinuous across the gas-solid interface. The presence of the indicator function in

the above expression denotes the discontinuity of the stress field. However, in PUReIBM the

stress tensor is continuous across the interface, as well as the velocity field. Thus, in order to

compute the dissipation at a particle surface that is consistent with the mathematical formula,

we neglect the velocity field inside particles and use only the gas-phase velocity field. Therefore,
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Figure B.3 The spherical coordinate system located at the center of particle.

the local dissipation is written as

ε
(f)
local = u

′′(f)
i

∂

∂xj

(
2µ(f)s

(f)
ji

)
, (B.16)

the inner product of the gas-phase velocity fluctuations and the divergence of the gas-phase

stress tensor. Additionally, quantification of dissipation at the particle surface requires trans-

forming the velocity field from the Cartesian coordinate into a spherical coordinate, the origin

of which is located at the particle center, as shown in Fig. B.3. Local viscous dissipation is then

computed at the particle surface. Local viscous dissipation in spherical coordinate is written

as

ε
(f)
local = µ(f)

(
u′′(f)
r (∇2U)r + u

′′(f)
θ (∇2U)θ + u

′′(f)
φ (∇2U)φ

)
. (B.17)

The Laplacian of a vector in the spherical coordinate is defined as

(∇2u)r = ∇2ur −
2ur
r2
− 2

r2

∂uθ
∂θ
− 2 cot θ uθ

r2
− 2

r2 sin θ

∂uφ
∂φ

,

(∇2u)θ = ∇2uθ +
2

r2

∂ur
∂θ
− uθ

r2 sin2 θ
− 2 cot θ

r2 sin θ

∂uφ
∂φ

,

(∇2u)φ = ∇2uφ −
uφ

r2 sin2 θ
+

2

r2 sin θ

∂ur
∂φ

+
2 cot θ

r2 sin θ

∂uθ
∂φ

, (B.18)

with ∇2f being

∇2f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (B.19)
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Figure B.4 Representation of spherical shells to compute one–sided derivatives for local vis-
cous dissipation estimation

The local dissipation at particle surface is computed by quantification of these derivatives. Local

dissipation is then averaged along the polar coordinate θ, that is perpendicular to the mean

flow direction, and reported along the azimuthal coordinate φ, parallel to the flow direction.

Two methods are employed to compute the derivatives in Eqs. B.18 and B.19 that are discussed

bellow.

Finite difference approach

Gas-phase data is used to compute the derivatives by means of one–sided second order finite

difference expressions, as shown in Fig. B.4. In this method, the velocity field is interpolated

on spherical shell points. The local viscous dissipation computed from the gas-phase velocity

field exhibits fluctuations as shown in Fig. B.5 for the case φ = 0.05, Rem = 20, and Dm = 30

as an example. There are two main reasons associated with this fluctuations:

1. PUReIBM employs a predictor-corrector method. The implementation of no-slip and

no-penetration boundary conditions takes place in the predictor step. The corrector step,

which ensures the continuity of the velocity field, does not guarantee that the boundary

conditions are attained accurately.

2. In immersed boundary methods, the interpolation operator introduces a small numerical
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Figure B.5 Local viscous dissipation at particle surface for a SC configuration with φ = 0.05,
Rem = 20, and Dm = 30, from the finite difference method

error into the field which is not removed through the solution.

These negligible errors co-exist near the gas-solid interface. Although they do not influence

the flow quantities, they are reflected in the dissipation estimation when computation of higher

order derivatives are required.

PHYSALIS method

Local viscous dissipation computed from the approach discussed above does not show con-

vergence characteristics due to the presence of fluctuations. Consequently, we use another

numerical method, called PHYSALIS (Prosperetti and Oguz, 2001), that produces a smooth

analytical solution for velocity and pressure fields in the proximity of particles. This method

assumes that very close to the particle surface the viscous forces are dominant, compared to in-

ertial forces. Thus, the flow field can be represented by Stokes equations. An analytical Stokes

flow is constructed by means of spherical harmonics, satisfying the no-slip and no-penetration

boundary conditions at particle surfaces on one hand, and the inertial-dominant flow field from

the Navier-Stokes solver on the other hand. The coupling between the Navier-Stokes solver

and spherical harmonics takes place at cage nodes, the computational nodes being adjacent

to the particle surface. In addition, the number of modes for the spherical harmonics should

be determined. We use the PHYSALIS method with four modes in spherical harmonics to

generate an analytical solution from our PR-DNS data to compute dissipation at the particle
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(a) φ = 0.05, Rem = 20 (b) φ = 0.05, Rem = 50

(c) φ = 0.1, Rem = 20 (d) φ = 0.1, Rem = 50

Figure B.6 Convergence characteristics of local viscous dissipation for simple cubic configu-
ration, from the PHYSALIS method.

surface for SC configurations, as shown in Fig. B.6. Note that this method is only used for

post-processing purposes, and is not coupled with the flow solver. The results indicate that

the viscous dissipation exhibits convergence at particle surface with grid resolution for cases

considered in this study. However, we should point out that the performance of PHYSALIS is

strongly influenced by the number of modes in spherical harmonics. In addition, the validity

of the method depends on the proximity of cage nodes to the particle surface for the validity of

Stokes flow assumption. Moreover, the system of equations obtained by employing the bound-

ary conditions on spherical harmonics is over-determined. A least square methodology is used

to solve this system of equations, which gives an approximation to the exact solution. Thus,
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even the smooth field from PHYSALIS cannot predict correctly the dissipation at particle

surface.
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